Control of astrocyte Ca2+ oscillations and waves by oscillating translocation and activation of protein kinase C

نویسندگان

  • Franca Codazzi
  • Mary N. Teruel
  • Tobias Meyer
چکیده

BACKGROUND Glutamate-induced Ca2+ oscillations and waves coordinate astrocyte signaling responses, which in turn regulate neuronal excitability. Recent studies have suggested that the generation of these Ca2+ oscillations requires a negative feedback that involves the activation of conventional protein kinase C (cPKC). Here, we use total internal reflection fluorescence (TIRF) microscopy to investigate if and how periodic plasma membrane translocation of cPKC is used to generate Ca2+ oscillations and waves. RESULTS Glutamate stimulation of astrocytes triggered highly localized GFP-PKCgamma plasma membrane translocation events, induced rapid oscillations in GFP-PKCgamma translocation, and generated GFP-PKCgamma translocation waves that propagated across and between cells. These translocation responses were primarily mediated by the Ca2+-sensitive C2 domains of PKCgamma and were driven by localized Ca2+ spikes, by oscillations in Ca2+ concentration, and by propagating Ca(2+) waves, respectively. Interestingly, GFP-conjugated C1 domains from PKCgamma or PKCdelta that have been shown to bind diacylglycerol (DAG) also oscillated between the cytosol and the plasma membrane after glutamate stimulation, suggesting that PKC is repetitively activated by combined oscillating increases in Ca(2+) and DAG concentrations. The expression of C1 domains, which increases the DAG buffering capacity and thereby delays changes in DAG concentrations, led to a marked prolongation of Ca(2+) spikes, suggesting that PKC activation is involved in terminating individual Ca(2+) spikes and waves and in defining the time period between Ca(2+) spikes. CONCLUSIONS Our study suggests that cPKCs have a negative feedback role on Ca(2+) oscillations and waves that is mediated by their repetitive activation by oscillating DAG and Ca(2+) concentrations. Periodic translocation and activation of cPKC can be a rapid and markedly localized signaling event that can limit the duration of individual Ca(2+) spikes and waves and can define the Ca(2+) spike and wave frequencies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoform-specific phosphorylation of metabotropic glutamate receptor 5 by protein kinase C (PKC) blocks Ca2+ oscillation and oscillatory translocation of Ca2+-dependent PKC.

Prolonged activation of metabotropic glutamate receptor 5a (mGluR5a) causes synchronized oscillations in intracellular calcium, inositol 1,4,5-trisphosphate production, and protein kinase C (PKC) activation. Additionally, mGluR5 stimulation elicited cyclical translocations of myristoylated alanine-rich protein kinase C substrate, which were opposite to that of gammaPKC (i.e. from plasma membran...

متن کامل

The Bimodal Nature of Neurovascular Coupling

Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Protein kinase C activation inhibits receptor- evoked inositol trisphosphate formation and induction of cytosolic calcium oscillations by decreasing the affinity-state of the cholecysto- kinin receptor in pancreatic acinar cells

Digital-imaging microscopy of Fura-2-loaded pancreatic acinar cells revealed that the C-terminal octapeptide of cholecystokinin (CCKe) dose-dependently recruited 94% of freshly isolated acinar cells in terms of receptor-evoked Ca2+ mobilization. Maximal and half-maximal cell-recruitment were reached with 0.1 nM and 16.8 pM CCKe, respectively. The upstroke of the dose-recruitment curve consisted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001